01
02
03
04
工程层面:大家都基于一些最佳实践去训练大模型,比如此前基于 BF16 精度、分布式技术等最佳实践训练大模型,现在有一种可能是需对这些最佳实践做调整。比如有探索训练精度的工作,表明在某些精度前提下,模型效果会遇瓶颈,(验证)这种假设,需回到工程层面排查之前实践有无疏漏。
数据层面:大家目前有一个基本共识就是文本数据渐趋枯竭,大家开始探索合成数据,虽然理论上有很大空间,但现阶段数据支撑有限。
理论层面(最坏的情况):存在 scaling law 从数学理论上真撞墙的可能,或许需更高模型复杂度、数据复杂度来支撑更强的 scaling law,但目前人类可能做不到,而且无法完全排除这种情况。
05
一是实现更多模态天然融合,比如让音视频作为可被理解的上下文,支持更长的窗口、更复杂的输入,可以理解更抽象的事物。 二是推理速度(提升),我觉得能在 2025 年达到实时,即视频生成所需时间短于视频时长,从而能看到实时生成的视频。
06
第一类追求快速爽感的用户体验,如泛娱乐、特效、图像视频编辑等行业,能全面使用标准化 API 并形成良好收费模式;
第二类追求特定风格和细节,比如动漫和游戏行业,已能用 API 替代部分工作而且替代程度随模型效果提升而提高;
第三类追求更高可控性、美观性、真实性,比如营销、影视和短剧行业,主要与标杆客户共创新的工作流,追求颠覆现有流程。
07
热点视频
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...