AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
论文链接:https://arxiv.org/pdf/2410.02195 github 链接: https://github.com/xiaolin-cs/backtime neurips 主页: https://neurips.cc/virtual/2024/poster/95645
实时性。在对 t 时刻进行攻击的时候,触发器形状必须要在 t 时刻之前就预先决定。其原因是,时间序列预测只关心 “未知的未来”,而不关心 “已知的过去”,一旦时刻 t 到来,那么它就变成 “已知的过去”,对这个时刻的攻击也就毫无意义。 攻击目标的约束性。由于回归任务没有标签,因此目标模式和触发器一样直接嵌入训练集中。这就要求目标模式也满足隐蔽性要求。 软定位。预测任务的输入是从训练集中截取的一部分时间窗口,因此,输入可能只含有部分触发器和目标模式。在这种情况下,如何定义输入是否被攻击是一个难点。
何处攻击:基于前文的攻击范式,攻击者可以随意选择想要攻击的变量,而后门攻击依然成功。
何时攻击:将训练集中的数据按照干净模型的预测 MAE 从小到大(图上从左到右)分成十组。这十组数据对于干净模型的学习难度逐步提升。论文作者使用简易的后门攻击(固定的触发器)来分别攻击这十组数据。
如何攻击:首先,将变量之间的关联建模成有权邻接矩阵 A。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:liyazhou@jiqizhixin.com
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...